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Abstract

Domain knowledge permeates all aspects of the engineering drawing analysis process, in-
cluding understanding the physical processes operating on the medium (i.e., paper), the
image analysis techniques, and the interpretation semantics of the structural layout and
contents of the drawing. Additionally, an understanding of the broader reverse engineer-
ing context, within which the drawing analysis takes place, should be exploited. Thus as
part of a wider project on the reverse engineering of legacy systems, we have developed an
agent-based engineering analysis system called NDAS (nonDeterministic Agent System).

In this paper, we discuss the nature of such a system and how knowledge can be made
explicit (both for agents and humans) and how performance models can be de£ned, cal-
ibrated, monitored, and improved over time through the use of persistent knowledge. A
framework is proposed that allows computational agents to: (1) explore the threshold space
for an optimal analysis of the drawing, (2) control information gain through agent invoca-
tion, (3) incorporate and communicate knowledge, and (4) inform the software engineering
and system development with deep knowledge of the relationships between modules and
their parameters (at least in a statistical sense).
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Explicit and Persistent Knowledge in Engineering 
Drawing Analysis 
 
Thomas C. Henderson 
School of Computing, University of Utah 
 
Abstract 
 
Domain knowledge permeates all aspects of the engineering drawing analysis process, 
including understanding the physical processes operating on the medium (i.e., paper), the 
image analysis techniques, and the interpretation semantics of the structural layout and 
contents of the drawing.  Additionally, an understanding of the broader reverse  
engineering context, within which the drawing analysis takes place, should be exploited.  
Thus as part of a wider project on the reverse engineering of legacy systems, we have 
been developing an agent-based engineering analysis system called NDAS 
(NonDeterministic Agent System). 
 
In this paper, we discuss the nature of such a system and how knowledge can be made 
explicit (both for agents and humans) and how performance models can be defined, 
calibrated, monitored, and improved over time through the use of persistent knowledge.  
A framework is proposed that allows computational agents to: (1) explore the threshold 
space for an optimal analysis of a drawing, (2) control information gain through agent 
invocation, (3) incorporate and communicate knowledge, and (4) inform the software 
engineering and system development with deep knowledge of the relationships between 
modules and their parameter (at least in a statistical sense). 
 
1.0 Introduction 
 
The reverse engineering of legacy systems is a difficult and complex problem, but of vital 
importance.  This usually involves a physical instance of the system, as well as some 
paper drawings produced by hand or from mechanical CAD systems.  The goal may 
range from exact replication, to changing some parameters, to a major re-design.  For 
example, Figure 1 shows a gearbox that operated for many years as part of a shipyard 
crane system.  Developing reverse engineering techniques from such a physical example 
and any available related engineering drawings is our goal. 
 
 

 
Figure 1.  Newport News Gearbox 
 
Figure 2 shows the overall reverse 
engineering system we are developing; 
the goal is to take advantage of data about 
the system in all its forms: drawings, 3D 
scans, and CAD models as they are 
constructed, as well, and to allow the user 



virtual access during the redesign process (see Figure 3).  The wider knowledge involved 
includes manufacturing information and constraints, design analysis codes (e.g., stress or 
aerodynamics), cost/performance models, etc. 
 

 
 
 
Figure 2. Reverse Engineering System 
 

 
 
Figure 3.  Envisioned Virtual Interface to model surface, point cloud and drawing data. 
  



2.0 The Vision 
 
Before giving details on the systems we have been building, we would like to give our 
vision of how to construct a system so that domain knowledge can be exploited in a 
powerful way.  We now give a high-level summary of our proposed theoretical 
framework and enumerate some advantages that may result from this approach. 
 
Figure 4 shows a set of agents, Ai, each of which produces various outputs using a set of 
parameters and thresholds, Ti, and each having an associated model (or set of models), 
Pi(Xi|Ti), describing the agent’s variance from the ideal in terms of some appropriate 
measure.  Knowledge of three sorts (physical, image analysis, and structural 
interpretation) is available and informs the agents’ actions and understanding of each 
others results.  Higher-level control processes may exploit this in several ways: 
 

1. Explore the threshold space for global optima (see feedback loop in Figure 4). 
2. Control acquisition of new data (e.g., view token generation as state estimation 

and select agent action that optimizes information gain). 
3. Incorporate knowledge in abstract form and communicate abstractions between 

agents and users. 
4. Inform the software engineering and system development with deep knowledge 

of the relationships between modules and their parameters (at least in a statistical 
sense). 

 

 
 
Figure 14.  Smart Agents Network System 
 
The current status of the project (called the Smart Agent Network System or SANS) is 
that the core image and structural analysis components have been developed and applied 



to engineering drawing analysis to gain experience and insight into crucial agents, their 
parameters and interactions.  We are now exploring the representation of this domain 
knowledge in specific nomenclatures.  We are also investigating state estimation 
frameworks to provide a more incremental analysis based on observations provided by 
the system, and the associated information measures (see [Catlin 1989] for an 
introduction to the area).  Notice that each program execution can be viewed itself as a 
measurement on the image, and the set of measurements will be used by a control process 
to achieve the best interpretation of the drawing. 
 
Note that state estimation is a reasonably mature tool in many engineering applications.  
More recently, such methods have been incorporated in multisensor systems to try and 
achieve optimal control and sensing [Durrant-Whyte 2003].  More broadly, this approach 
is starting to see proponents in scientific computing as well [Emery 2001, Emery 2002]. 
We believe that it can be applied to general large software systems; however, in this 
paper, we discuss how it might be used in engineering drawing analysis. 
 
2.0 Engineering Drawing Analysis with NDAS 
 
We have shown that a structural model may be realized through a set of software agents 
acting independently and in parallel to ultimately achieve a coherent analysis of CAD 
drawings [Henderson2003a,Henderson2003b,Henderson2003c,Swaminathan2002].  The 
high-level goals of the analysis are to: 
 

• Understand legacy drawings. 
• Acquire context of field and engineering data. 
• Respond to external analysis, user input. 
• Integrate drawing analysis in redesign. 

 
NDAS allows multiple agents to produce the same type of data, for example, line 
segments or text.  Other agents which use these entities as inputs may choose from any or 
all of the available sets of data to produce their own data.  Moreover, even a single agent 
can produce its output using multiple thresholds, or can be asked by another agent to 
produce output with a given set of control parameters.  This allows people or more 
sophisticated agents to explore the entire parameter space of all the agents involved in the 
analysis. 
 
The mechanism to handle the combinatorial explosion of data is tied to the structural 
definition of the engineering drawing, and uses syntactic analysis to eliminate redundant 
comparisons.  This symbolic redundancy calculation uses both the syntax of structural re-
write rules, as well as parsing constraints on the tokens generated from the image analysis 
to achieve orders of magnitude reductions in the possible combinations of tokens.  
However, NDAS to date has done little else to incorporate or exploit the wealth of other 
knowledge involved in understanding engineering drawings. 
 
3.0 Knowledge about Engineering Drawing Analysis 
 



Figure 4 shows the sequence of paper drawing creation and exploitation with which we 
are concerned.  We consider knowledge about physical processes, image analysis and 
document interpretation. 
 

 
 
Figure 4.  Engineering Drawing Analysis Process 
 
3.1 Physical Processes 
 
It is important to capture knowledge about all aspects of the physical processes involved.  
For example, printing gives rise to certain errors that can influence the image analysis 
and subsequent interpretation.  During storage and usage, it is possible to introduce lines 
by folding or creasing, or to obscure lines and text by stains, writing or damage to the 
paper.  Scanning is itself a physical process subject to motion blur, lighting, scale and 
other perturbations.  Good understanding is necessary for robust and correct analysis, and 
a good synthesis model will allow the controlled creation of test data with defects. 
 
3.2 Image Analysis 
 
Discrete geometry plays a large role in the analysis of engineering drawings, and involves 
abstract notions, including: 
 

• 0-dimensional objects: isolated points, corners, branch points, end points, etc. 
                  and relations: distance, near, same kind, etc. 

• 1-dimensional objects: line segments, straight segments, circles, boxes, etc. 
                             and relations: collinear, parallel, perpendicular, neighbor, closed, etc. 

• 2-dimensional objects: blobs (e.g., arrowheads) 
                             and relations:  above, left of, touches, occludes, etc. 
 
Moreover, these notions cannot be implemented perfectly, and it is important to know 
how the realizations differ from the ideal (e.g., what’s the threshold for parallel?).  Even 



more important is the relation of these notions and their recovered approximations to the 
semantic tokens which form the basis for the structural analysis. 
 
 
 
3.3 Structural Analysis 
 
The structure of the drawing is given by a set of tokens (e.g., line segments, text, pointers, 
graphics, manufacturing symbols, etc.) and the relations that hold between them.  Thus, 
the production of the tokens is crucial, and interpretation problems arise when tokens are 
missing, broken into parts, or falsely reported.  The relations between the tokens need to 
be clearly defined, as well as the amount of divergence from the ideal.  Context of 
various sorts is also extremely important, and ranges from geometric frame (which way is 
up?) to drawing type (detail drawing, assembly description, manufacturing constraint 
requirements, etc.). 
 
These various sets of knowledge are usually not made explicit, either during the 
development of the system or for exploitation during an analysis.  We are interested in 
answering the following kinds of questions: 
 

1. How can this knowledge be made explicit? 
2. How can the differences between the ideal and the implementations be given? 
3. Can some of the knowledge (ideal or performance) be learned by the agents? 
4. How can people interact with this knowledge to understand why the system does 

something or to change how the system does it? 
5. How can the knowledge be exploited during the analysis of one image; over a set 

of related images; over various projects, i.e., in order to gain and record more 
insight on engineering drawing analysis in the log term. 

 
It is essential to answer these questions so that the system can improve over time, and be 
more effectively understood and exploited by its human operators. 
 
4.0 Proposed Method 
 
We propose the following approach to address this problem: 
 

1. Give a specification for the ideal. 
2. Give ways that implementation can differ from ideal. 
3. Give a measure of the difference. 
4. For every analysis, keep a record of the ideal referent, actual produced, difference 

measure and analysis parameters. 
 
For example, parallel segments should ideally have 0 degrees difference in angle.  A 
difference measure would be the actual difference in angle, or some monotonically 
increasing function (square, exponential, etc.).  Various implementations would carry 
different information; e.g., if parallel is computed from the two segment angles, then an 
angle difference threshold would be kept; if parallel is determined by whether the points 
defining the one segment are all the same distance from the other segment, then the 



maximum and minimum distances would be kept.  It is possible to have agents for both 
parallel operators, and the system can decide (based on training or operator feedback) 
which is better.  This goes with our notion to develop a system which allows many 
different analysis methods in parallel, and from this wealth of data, chooses between 
them to construct the best interpretation possible. 
 
This approach also fits well with statistical approaches.  For example, various 
information measures can be defined and used to steer the analysis.  Once we have 
established mechanisms for knowledge expression and use, we will explore alternative 
mechanisms for the exploitation of that knowledge (for example, Durrant-Whyte and 
colleagues [Durrant-Whyte 2003] have developed methods to maximize information gain 
with each observation action – this approach might give good results here). 
 
4.1 Knowledge about Engineering Drawings 
 
Let’s look in more detail at the knowledge that would be useful in this application.  As 
for engineering drawings per se, Table 1 gives some of the useful information: 
 
Subject Issues Form of Knowledge 
Layout Up/down, text orientation Semantic network/ grammar
Symbols Alphabet, digits, special Dictionary; images; nets 
References Conventions for pointers, 

names, use of circles, etc. 
Semantic net; image 
features 

Characters Language, numbers, 
measures 

Semantic nets, feature 
vectors, images 

Real world semantics Manufacturing info, 3D, 2D 
projections, etc. 

Semantic network 

 
Table 1. Types of Knowledge in Engineering Drawing Analysis 
 
As can be seen, most of this knowledge, if it exists, might be better expressed as a 
semantic network or in vector or image form.  We are currently investigating the 
construction of a domain ontology, and hope to base it on the Standard Upper Merged 
Ontology (or SUMO) [Niles 2001].  In this way, we make the assumptions of the agents 
explicit, and provide a SUO-KIF [SUO-KIF] interface to other users and systems.  
However, it must be pointed out that our domain requires analogical forms of knowledge 
as well, including: images, 3D data sets from Coordinate Measurement Machines or laser 
scanners, etc.  Some axiomatizations and ontologies for geometry exist (e.g., see [Asher 
1995, Pratt 1997, and Tarski 1956], but their usefulness in this context remains to be 
seen. 
 
Image analysis has its own set of concerns, including: 
 

• 1D segments, 
• pixels (digitization), 
• relations, and 
• realization of geometry. 



 
Algorithms include: thresholding foreground/background, thinning, segment extraction, 
straight segment determination, geometric objects detection (e.g., boxes, circles), pointer 
detection, and text detection.  Each of these must deal with thresholds, sensitivity 
analysis, quality estimates, complexity, and robustness with respect to other algorithms. 
 
Finally, knowledge about goals may influence agent actions; here are some goals that the 
system may be asked to achieve: 
 

• Find part name. 
• Find label information. 
• Extract references to other parts. 
• Get dimension information for specific part features. 
• Determine manufacturing constraints. 
• Determine safety or other special descriptions in the text. 

 
These various forms of knowledge should not be static, but should be adjustable over 
time, as more experience is gained.  For example, the use of pointers in drawings can be 
quite creative, and these need to be cataloged and accounted for.  At a minimum, 
threshold exploration should be possible and recorded.   
 
Another issue is what needs to be communicated between agents (and/or users) which 
includes at least the following: 
 

• the goal, 
• the results of an agent; this includes the info produced, info about the production 

of the info, and some quality of result measures, and 
• feedback to an agent; for example, “this data resulted in no solution” or “parallel 

constraint needs to be tighter” or “your results are not necessary for this goal”; 
this last feedback would lead to greater efficiency if agents know when they are 
unnecessary. 

 
For example, the circle agent uses simple 1D segments (a set of pixels) as input and 
checks if the set of pixels forms a circle.  However, this agent is not necessary for the 
analysis of the title block of a drawing; it is essential, however, for full drawing analysis.  
The result of the analysis is a list of point sets determined to constitute circles, and for 
each circle gives the center and radius, the segments or pixels involved, a quality measure 
of the circle, and the resources used to produce the circle (e.g., data files used, space and 
time complexity, etc.).  It may also be necessary to include information about why the 
thresholds and parameters were selected.  As an example of feedback that the circle agent 
may want to provide, suppose that it uses straight line segments to detect circles (i.e., a 
set of straight line segments form a circle if they are connected end to end and their 
points do not lie to far from a circle); if the straight segments are fit too coarsely, they 
may not form a circle, when in fact the pixel data would permit a circle.  Thus, the circle 
agent may want to ask the segment agent to re-fit the data with a tighter linear fit 
threshold. 
 



As a starting point, we have investigated the knowledge about thresholds and their 
interplay between entities produced, consumed, and the semantic tokens generated. 
Figure 5 shows the image analysis part of NDAS.  Threshold utilization is indicated by 
the circled numbers.  Table 2 gives the meanings of the thresholds. 
 
 

 
Figure 5. The Image Analysis Agents and the flow of data between them. 
 
Circle no. in Figure 5 Thresholds/parameters Related Impact 

1 foreground/background extra/missing pixels; 
connectivity of segments 

2 pixel curvature parameters corner detection, straight 
segment endpoints 

3 circle fit parameters circle detection, reference 
detection 

4 line fit parameters number and quality of 
segments 

5 collinear; line fit parameters large-scale object detection 
6 endpoint distances; segment 

lengths; collinear 
pointer ray detection, 
dimension analysis, 
references 



7 segment length, separation 
threshold, parallel, 
perpendicular, duplicate 
threshold 

box detection; document 
block analysis, text analysis 

 
Table 2.  Image analysis agent thresholds and parameters and their impact. 
 
We term the image analysis knowledge given in Figure 5 as superficial knowledge, since 
it concerns only the external relations between the agents and their products.  Thus, 
information about the organization of modules, which use the data from which others, 
their production information, the quality measures on the data, the amount and trends of 
data production, and the system activity all fall under this term. 
 
Opposed to that is deep knowledge, which concerns the inner workings and decision 
rationales for implementations, threshold settings, etc.  This then includes an ideal 
description of the process, an explanation set of how the implementation differs from the 
ideal, a characterization of the likelihood of the variances from the ideal, and the relation 
of the variations to further processing, including semantic token (terminal symbol) 
creation and semantic analysis. 
 
To clarify these ideas, let’s consider the image thinning process.  There is a mathematical 
notion of a valid thinning operator on point sets, but implementations may vary from this 
ideal for many reasons and with different implications.  Consider the four versions of the 
thinned partial segment in Figure 6. 
 

 
Figure 6.  Four variations of a thinning operation. 
 
Which of these is produced may significantly impact later analysis; e.g., abstractions 
based on end point, branch point and straight line segment relations can be radically 
different.  Figure 7 shows a set of relation graphs for the thinned objects above. 
 

 
 
Figure 7.  Graphs of connectivity between end points (e1,e2,…), and branch points 
(b1,b2,…) of thinned objects from Figure 6.  (Between every pair of nodes is a, not 
necessarily straight, line segment.) 



 
As can be seen, the number of line segments, the position of their endpoints and the 
geometric relations between them (distance, parallel, etc.) can all be greatly affected by 
these differences in the thinning.  Thus, what might be viewed as a local or minor 
algorithm issue, may lead to a radical change in performance (including increase in 
complexity if lots of small segments are generated) if there is no knowledge of how one 
process impacts other processes through shared analysis objects.  It is of great interest to 
understand these relationships, and to declare them when the system is designed and 
implemented, but even if that is not possible or accurate (the developers may not 
understand the impact!), it would be good to allow the system to determine some of this 
knowledge as various algorithms are executed with different parameter values. 
 
In terms of the thinning operation, we might proceed as follows: 
 
Ideal definition of thinning: One example of this is the medial axis transform [Blum 
1973].  This is the set of points such that a circle centered at the point touches the 
boundary of the object in at least two distinct places. 
 
Algorithm difference from ideal: the algorithm may approximate the ideal definition in 
order to reduce computational complexity and because the ideal notions don’t apply 
perfectly to digital geometry.  The following differences may occur: 
 

1. Ends of segments may be fragmented. 
2. Corner regions of segment may be fragmented 
3. Medial axis may be displaced from actual corner location. 

 
Measures of difference: Several possibilities exist to measure the three differences listed 
above.  There are two levels of measure, however.  First, it is of interest to measure 
individual errors in terms of the number of extra segments produced, or the distance a 
thinned set is displaced from a point of interest in the original point set.  In addition, it is 
useful to have some statistics over the whole population.  For example, this might be 
either (1) a likelihood on the number of extra fragments expressed as a mean and 
variance or in other forms, or as a function of the original segments, the features of the 
segment or those of the thinned segment.  For example, if the thinned segment is 
perfectly straight, then it is most likely that it perfectly represents the ideal. 
 
Model Calibration 
 
This approach also affords the opportunity to generate controlled test data and to obtain 
very good estimates of how well the model works.  This would work as follows.  A CAD 
model is developed for some artifact.  This is then printed, possibly submitted to various 
degradations, and then scanned.  Since the actual CAD model is available, it is possible to 
know the perfect set of pixels that should have been printed and then scanned.  Once the 
thinned objects are determined, they can be compared to the perfect set of thinned 
objects, etc.  We call this model calibration, as it can be used to determine how well the 
process model measures the true state of affairs. 
 
5.0 Examples 



 
We have performed many experiments with the image analysis part of NDAS.  Figure 8 
shows part of a typical scanned engineering drawing, and the thinned image in Figure 9. 
 

 
 
Figure 8.  Part of a typical scanned engineering drawing. 
 



 
 
Figure 9. The thinned version of the image in Figure 8. 
 
One thing to notice is how the arrowheads in the original image have been changed into 
line segments.  Also, the corners of boxes have been displaced several pixels from where 
they should ideally be located.  Figure 10 shows the boxes detected in the image, so it can 
be seen that it is still possible to find them, however, this may cost a great deal in 
computational or algorithmic complexity, or the algorithms may in fact be tuned for one 
image and not work very well on another.  This is the kind of knowledge we would like 
to gain and record for better exploitation of the system, 
 



 
 
Figure 10.  Boxes found based on the thinned image in Figure 9. 
 
A change in thresholds of 2 pixels in length, and parallel segment overlap of 10 % more, 
results in missed boxes. 
 
Now consider in detail the kind of information to be gathered and characterized about the 
thinning algorithm.  (Note: the ground truth locations of corner points for the boxes in the 
image have been given by hand.)  We would like to model the impact of the algorithm 
on: 

• True corner existence. 
• Segment recovery (particularly, endpoint location). 
• Box detection and localization. 

 
For the image in Figure 8, the histogram in Figure 11 shows the ideal corner points 
distance from the thinned pixel set: 
 



 
 
Figure 11.  Histogram of ideal corner point displacement in thinned image. 
 
The segment endpoint distance histogram is given in Figure 12. 
 

 
 
Figure 12.  Histogram of Ideal Box Segment Endpoint Distances from Detected. 
 
This data is for ideal segments such that there exists a segment produced by the image 
analysis whose endpoints are within 10 pixels of the ideal segment.  (The number of 
missing segments is eight; i.e., eight ideal segments have no counterpart in the segments 
extracted from the image.) 
 
Figure 13 gives the histogram for the distance of ideal box point corners from detected 
data. 
 



 
 
Figure 13.  Histogram of Ideal Box Corner Distances from Detected. 
 
All the ideal boxes were found, and the error is very low.  The data shows that the box 
detector algorithm is insensitive to endpoint displacement in the thinning and segment 
detection algorithms.  Moreover, even a missing segment does not preclude the detection 
of a box, so long as there is a reasonably long segment found on each side.  This depends, 
of course, on the thresholds in the box detector agent.  (Also, note that the box agent 
discovers ‘boxes’ in the image that are not included in the ideal set; e.g., the upper part of 
a letter ‘B’ in the text.) 
 
6.0 Conclusions and Vision 
 
We have to this point tried to convey a sense of the kinds of knowledge that interest us, 
and how they can be used in engineering drawing analysis.  We have also given a high-
level summary of our proposed theoretical framework (see Section 2), and have 
enumerated some advantages that may result from this approach. 
 
A larger issue is the use of other types of information in the reverse engineering scenario; 
e.g., 3D scanner data, photos, manufacturing information, etc.  These analogical forms of 
data must be integrated into the re-design as well, and this should be done so as to allow 
rapid iteration, and fast exploration of the design space. 
 
We believe that the state estimation control framework espoused here may be quite useful 
in the design, development and exploitation of general purpose large software systems, 
particularly, those characterized by parameterized modules, objects or agents interacting 
rather loosely and which allow multiple passes through the processing with different sets 
of parameters.  We hope to have some experience with a prototype system by the time of 
the workshop. 
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